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This paper discusses two analyses in flat slab construction; one is for column arrangements and
the other is for shapes of drop panel. )

The solutions are derived from the analogy between the bending moments of a plate and the deflec-
tion of a membrane.

Membrane experiments are conducted by the Moire Method.

Through the analysis regarding column arraugements, it is found that a triangular arrangement is
the most advantageous, while a hexagonal arrangement is the least advantageous. From the analysis
concerning the shapes of the drop panels, the largest shearing forces around the drop panel are found
at the edge of a square panel.

It is concluded that these methods are of wide application.

§1. COLUMN ARRANGEMENTS IN FLAT SLAB CONSTRUCTION

In this section, we discuss the most advantageous layout of column arrangement in
buildings with regular patterns of column arrangement such as warehouses, garages,
supermarkets, etc., and are also concerned with a random arrangement."

In flat slab construction, columns produce a quasi-frame cooperating with column-
strip as a beam, but it doesn’t have enough stiffness for earthquake load. Since horizontal
loads are generally supported by the external walls or shear walls of the building, the
quasi-frame for a flat slab construction is regarded as supporting only uniformly
distributed vertical floor load.

In general, slabs are subjected to both bending and torsional moments. Since the tor-
tional moments are held by concrete, the amount of reinforcement is depend on the ben-
ding monents. As slab has enough thickness in flat slab construction, it is usually under a
balanced steel ratio, and hence the amount of reinforcing bars is considered to be propor-
tional to the bending moments.

In the vicinity of the column head and the middle portion of the slab, the bending
moment has the same sign in all directions. Thus sum of the bending moments in any two
perpendicular direction indicates the required amount of reinforcing bars.
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The sum of the bending moments is provied as a second order differential equation.
Then we consider several sorts of cases for column arrangements. At the center of the col-
umn strip, the bending moment has different signs in two perpendicular directions; and
the finite element solutions are discussed.

We can realize the analogical relationship between the sum of bending moments and
the deflection of a membrane. Based on this analogy we conduct membrane experiments
and obtain contour lines by the Moire method.

As for regular patterns of column arrangement, we consider those cases shown in
Fig. 1. The load tributary area of each column is marked by a dotted line. These areas are
hexagonal for a triangular pattern, square for a rectangular pattern and triangle for a hex-
agonal pattern.
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Fig. 1 Column arrangements for flat slab

1.1 The Sum of Bending Moments of a Plate

Taking the x and y axes parallel to a plate, the bending moments M,, M, are?

= _D(az_wﬂa_zz)
B ax? ay?
M, = -D(az_wﬂ"’z_‘”)
B ay? ox2

in which

D: rigidity of the plate
w: deflection of the plate
v: Poisson’s ratio.

Denoting the sum of these perpendicular bending moments as M, we have

Fw  Fw
M=M+M,=—-D(1 +v) EX—2+W :

Since the differential equation of a plate with unitormly distribnted load, g, is given
by
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# @\ [ow w\ gq
a2 T anllaz Y 5.2 =5
ax ay*/\dx ay D

we get

M 4 M 1+ ) -

— t = - v)q.

ax?  ay? . d

Applying polar coordinates for the above equation, we get

M 1M 1M
F —r—a7+;iw= —(1 + v)q. )
As shown in Fig. 2, we divide the slab into two areas; the column portion and the
middle portion. The former is the portion of the plate around a column, which is given as
a circle with radius, a, i.e., half of the distance between two neighbouring columns and
the latter is the portion of the plate surrounded by the boundaries of the other column
portions.

A: Column portion
B: Middle portion

Fig. 2 Column portion and middle portion

The solutions for the column portion and the middle portion are denoted as M; and
M,, rerpectirely.

We utilize the analytical solution for a circnlar plate for the column portion.

Fig. 3(a) represents a circular plate of radius b (the radius of a column) with a load P
concentrated at the center. The diflection of the plate at a distance r, from the center of
the plate is provided by

__LPa’ r? F r? l g} .
A m{““‘)(l‘;i)‘( + ) loe )
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Fig. 3-(@) Circular plate with concentrated load
(b) Circular plate with uniformly distributed load

in which

4 a 1 2b*
log———=—, B= d

A= e il
at — b b 2 az—bzlogb'

As shown in Fig. 3(b), the deflection of the plate with uniformly distributed load is

qga’ { rt ( r’\ (b b r} a
w=———{1——+8c+D[1-5|[{5)+4{E-2=2) 10g=
64D a e+ 1) a*)\a? HE-2 a’ az) log rl}

4)
in which
1 a’ b* a 4ah? a\ b’
C=—— 3 4+ — + —. . = —_ . N
4( b2> F-p oty E (1 @ — b l°gb> PE
In the polar coordinates, M is expressed by
dw 1do
M=M+M==-D({ + v)|— + ——
f ( v)(drz r dr) )

Substituting Eqs. (3) and (4) into Eq. (5), the sum of the moments of the column portion,
M,, is obtained by

1+ v) ( R 1+ ' a 1
M = - ~P{A +log— ) — e d B2 - )
. 1 27? ogrl 2 q {b (C+10gr1) + 2r1}. 6)

Now that M, has been obtained, we next consider the sum of the moments of the
middle portion, M,. The origin of coordinates is taken at the center of the middle portion
(r2 = 0) and the middle portion is of polygonal shape with sharp angles surrounded by
the boundaries of the column portions (r; = a).
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We find the solution M, = 0 around the boundaries of column portion and connect
M, with M,.
First of all we employ the following as one of the:solution for M,:

! 1+ 3
4( v)qra,

which satisfies Eq. (2). Suppose the right hand side of Eq. (2) is equal to zero, we have
Laplace’s equation. Then we add either real or imaginary part of any complex function to
the solution.

We choose the following complex function.

CiZ" = Cyri(cos nf + isin nf) C: const.
of which the real part is
Cyrj3 cos nf.

Furthermore, since a constant Cj is also the solution for Eq. (1) with the right hand
side equal to zero, we obtain

1
M, = C, — Z(l + v)ri + Cir" cos né
Letting
1
Cy = 3 (1 + v)ga'?,

and substituting C, into the above equation for M,, we get

1 ry 2 rn\
M,=—(0+v)ga’?{2 = 2[—=| + G| =] -cos n8 @)
8 a a
with C, constant.
In the above equation, the line for M, = 0 presents a circle which a radius r, = ¢’ in
counting only first two terws, while the line provides a polygonal with sharp angles in in-
volving all the three terms.

(a) Rectangular arrangement
Since the area supported by a column is 44?2, the load P of this area is

P = 4qa*.

Substituting P into Eq. (6) provides M,.

Substituting # = 4 into Eq. (7), the line for M, = 0 forms a square with sharp
angles. Determing C, by trial and error in such a way that it should correspond to the
lines providing r, = a for the column portion,
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We next determine @’. The radius of the circle, which touches internally the middle
portion of the square shape with sharp angles, is (v2 = Da.
Substituting 6 = 7 /4 (the horizontal axis is # = 0) and M, = 0 into Eq. (7) leads to

r.=0.93a’.
Letting r, equal to the radius (V2 — 1)a, we get
a’ = {(¥2 — 1)/0.93}a.

The results are shown in Fig. 4. Outer lines give M, = 0, providing good agreement with
four circles (r, = a). Inner curve, which is very similar to a circle, gives a half of M, pax.
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N
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R N
M2=0
Momax/2

Boundary of the column portlon

Fig. 4 Lines for M, = 0 and M, ,,/2 of middle portion

As an example, we calculate the case for b = 0.2a. In the column portion, we obtain
from Eq. (6)

1
r = b M] = _522Mo Mo = E(l + v)qa2
n=a M, =1.31M,.

At the center of the middle portion, we get from Eq. (7)
r,=0, M,=0.40M,.
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Therefore, M at the center of the middle portion is
M = (1.31 + 0.40)M, = 1.71M,.

Fourier series expansion technique provides the solution®, 1.72M,. 1.71M, is almost
identrcal to the Fourier series solution. In obtaining the series solution, the column head
shape is assumed to be a square. Transforming the sgnare to an equivalent circle, we find

K =10.2/0.57 x 2 =0.175

In Fig. 5 M for each point between the column head and the center of the middle por-
tion is depicted.

-6~
5k o _55 522 Analytical solution
) o o o Numerical solution
-4F ® @ ® Result of membrane experiment
— -3r
3
a
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le 0 ! 1 |
- 0. 20a 1.00a 1.41a
> ) o
O 0o o o 1.52
21 1.7
3 -
4k

Fig. 5 Sum of bending moments (M) between column head and center of middle portion
(Rectangular arrangement)

(b) Triangular arrangement

Substituting P = 23 - ga® into Eq. (6), we get M, in the column portion.

In order to get M,, we substitute n = 3 into Eq. (7) and determine C; by trial and
error, obtaining

Substituting @ = n/3 (the vertical axis is # = 0) and M, = 0 into Eq. (7),
r, = 0.87a’.

Sinre r, is equivalent to the radius of (2/ v'3 — 1)a of the inscribed circle, then
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M:max/2

Hz=0

Boundary of
the column portion

Fig. 6 Lines for M, = 0 and M, .,/ 2 of middle portion

a’ = {2/ V3 - 1)/0.87}a.

As depicted in Fig. 6, the outer line is of M = 0, while the inner line is of half of M max-
As an example, we calculate the case of b = 0.2q, which is same as the rectangular
arrangement. Then,

A4i: r==b A41

—4.42My M, = %(1 + v)ga®
r=a M, =1.02M,
M r=0 M,=0.06M,.
At the center of the middle portion, M is
M = (1.02 + 0.06)M, = 1.08M,.

In Fig. 7 M of each point on the line connecting the column head and the center of the
middle portion is shown.

The ratio of the area supported by a column in this case to that in the rectangular ar-
rangement is

24/3/4 = 0.866.
Letting the supporting areas for both arrangemcnts identical, M at the column is

—4.42/0.866 = —5.10.
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Fig. 7 Sum of bending moments (M) between column head and center of middle portion
(Triangular arrangement)

It is quite close to —5.22 in the case of a rectangular arrangement. But, at the center of
the middle portion, the sum of the bending moments decreases about 30%.

(c) Hexagonal arrangement

Substituting P = 3v3 -ga? into Eq. (6), and performing the same calculations, we
obtain the result shown by a dashed line in Fig. 9. It is different from the value by other
methodology, as will be explained later, because Eq. (6) has been obtained with the built-
in boundary condition. The outer circular line of the column portion touches 6 other
circles in a triangular arrangement, 4 in a rectangular arrangement, and only 3 in a hex-
agonal arrangement. It therefore seems that more circular plates around a column make
the boundary condition closer to the built in.

For the hexagonal arrangement, the boundary of a column portion is assumed to
have 1/2 of the bending moment for the radial direction with r; = a substituted in Eq. (5).
Both for concentrated and distributed loads, the ration of the bending moment for the
radial direction to the bending moment for the tangential direction at the fixed end of a
circular plate with clamped edges is

MM, = L.
Estimating the bending moment at the boundary as

1
_—_.MC’
2(1 + v)
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in which M, is provided with r; = a substituted in Eq. (6), we add this bending moment
value to the original solution given by Eq. (6) to get the bending moments in the column
portion.
Substituting § = 7/ 6 (the horizontal axis is § = 0) and M, = 0 into Eq. (7), we ob-
tain
r, = 0.96a’.
Letting r» equal to the radius of the inscribed circle, we have

a’ = a/0.96.

Two lines providing M, = 0 and Mmn./2 are shown in Fig. 8. The latter looks
similar to a circle.

Boundary of ‘
the column portio M.=0

o SO o
2\

M.max/2

Fig. 8 Lines for M, = 0 and M, ,,,/2 of middle portion

Taking the case of b = 0.2a as an example, we get

1

Me=19M, —-———M
¢ 0 20 +v) €

= —0.82M, (v =0.2).

Adding this to Eq. (6) leads to

r = b M] = (_701 - 082)M0 e —7.83M0
n=a M] = (1.97 - 0.82)M0 = 115M0

Substituting » = 0 into Eq. (7), we get
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M, = 2.17M,.

At the center of the middle portion,
M = (1.15 + 2.17)M, = 3.32M,.

In Fig. 9 the solid line gives M on the line which connects the column head and the
center of the middle portion. Dividing M by the ratio of areas supported by a column
with hexagonal and square arrangements (33 /4 = 1.299), it increases about 15% and
50% at the column head and at the center of the middle portion, respectively.

._9 -
-8 VR Analytical solution
-1t o oo Numerical solution ]
8 e o o Result by membrane experiment

-——- Analytical solution with built-in
boundary condition

B 4l
a -3t
& )
e -1}
— 0 "
Sl 2. 00a
2+
3 3.35
Ar 3.32
5-.

Fig. 9 Sum of bending moments (M) between column head and center of middle portion
(Hexagonal arrangement)

1.2 Finite Element Analysis

Figures 10 ~ 19 are the finite element solutions for the bending moments of a plate.
The finite element analyses are performed by the FEM program of FRAP-GEN,
DEMOS.

In Figs. 5, 7, and 9 the white circles provide the sum of the bending moments, M, ac-
cording to the F.E.M. In these figures the upper numerals indicate the finite element
results, while the lower numerals the analyical solutions. They are in pretty good agree-
ment.

On the line connecting two neighboring columns as shown in Figs. 11, 15 and 18, the
bending moments with respect to the direstion parallel to the line, M., are identical for
any column arrangement with the equal supporting area for one column. However, the
bending moment with respect to the direction perpendicular to the line get larger in the
order of triangular, rectangular and hexagonal arrangement.
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Fig. 10 Finite element model for rectangular
arrangement
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Fig. 11 Bending moments on column strip line (v = 0.2)
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Fig. 12 Bending moments on center line of the slab
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Fig. 13 Bending moments on diagonal

Fig. 14 Finite element model for triangular arrangement
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Fig. 15 Bending moments on column line

Fig. 16 Bending moments between column head

and center of middle portion

Fig. 17 Finite element model for hexagonal arrangement
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Fig. 18 Bending moments on column line
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Fig. 19 Bending moments on center line of slab

1.3 Membrane Experiments

The deflection of a membrane, z, under a uniform load ¢ and a uniform tension T'is
x*r  ay? T
Equation (8) provides the analogy to the equation of the sum of bending moments (M).
Accordingly, we could measure M by the deflection of a membrane.

For the experiment, we apply uniform tension to a thin rubber membrane with the
height of column equal to the height of the periphery of the frame, and provide the mem-
brane with air pressure.

These experimental results are shown in Photos 1, 2 and 3. We establish the height of
a contour line from membrane experiment with a simply supported square plate. The sum
of the bending moments derived from the experiments are presented by black circles in
Figs. 5, 7 and 9. They provide a good agreement with both the analytical solution and the
finite element solution presented by the white circles.

Although a membrane experiment is easy to conduct and provides quite accurate
results, it is difficult to decide the zero-order contour line. For the following examples, we
obtain M at the column head from the analytical solution in similar way to the hexagon ar-
rangement.

We show a combination of square and octagonal arrangements in Photo 4. We can
recognize more contour lines at the octagonal portion. The value of M along the line con-
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Photo 1 Moire fringes of membrane experiment Photo 2 Moire fringes of membrane experiment
(Rectangular arrangement) (Triangular arrangement)

Photo 3 Moire fringes of membrane experiment (Hexagonal arrangement)

necting the column head and the center of the middle portion is given in Fig. 20. M is
larger than in the case of a hexagonal arrangement with the equal supporting area.

We get to the following concluding remarks:
1) Among three kinds of column arrangements, a triangular arrangement is a little more
advantageous than a regular rectangular arrangement, and a hexaognal arrangement is
the least advantageous.

2) Including the remarks(1), larger middle portion leads to less advantageous arrange-
ment.
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e o o Result of membrane experiment
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Fig. 20 Value of M (combination of regular rectangular and octagonal arrangement—dashed line refers to the
hexagonal arrangement)

§2. SHEARING FORCES IN FLAT SLAB CONSTRUCTION

For flat slab construction, there have been many studies about the bending moments,
but only a few theoretical studies about shearing forces have been reported. For a large
amount of floor load or a large distance between two neighbouring columns, we have
significant shearing forces around a drop panel. The distribution of the shearing forces
depends on the shape of the drop panel.
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In this section, we calculate the shearing forces of a plate for various shapes of the
drop panel, utilizing the analogical relationship between the sum of the bending moments
of a plate and the deflection of a membrane subjected to a distributed load.

2.1 Analogy between shearing forces of plate and deflections of membrane

The sum of bending moments of two perpendicular directions satisfies Eq. (1), which
has exactly the same form as the equation of the membrane deflection provided by Eq. (8).

Denoting the magnitudes of shearing forces with respect to the x- and y-axes by QO
and Q,, respectively, and also denoting an arbitrary direction by n, we have

_ i o (Fw Fw
On=0xcosa+ Q) sina = “on\ax? + 52—
1 oM

"'Q"=1+v¥' @

where « is the angle between the x-axis and the n-direction.

2b

Drop Panel

Fig. 21 Portions around columns
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Since it is realized from Eq. (9) that differentiating the deflection of the membrane
provides the shearing forces of a plate, the slope of the membrane corresponds to the

shearing forces.

2.2 Sum of Bending Moments and Deflection of Membrane

1) Circular drop panel
We have a solution of Eq. (2) as follows:

M= 1Y 2{21’—21 ApNiAl 1} 10
e 1 qa B Ogr r . (10)

Letting b = 2.5a in Eq. (10), the contour lines around the drop panel are found to form
concentric circles as depicted in Photo 5.

Photo 5 Moire fringes of membrane experiment (Circular drop panel)

_7--
-6 )
N:d
=
Y -5k
X
— —4.——
| -t
; s 5 o Result of membrane experiment
K i — Theoretical solution
_1 —
2 = ,, -
U 1.0a 1.5a 2.0a 2.58 r

Fig. 22 Value of M for circular drop panel (8 = 0°)
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In Fig. 22 theoretical and experimental solutions are presented giving a good agree-

ment.

2) Square drop panel with round angles
The following satisfies Eq. (5)

o LtL 2{2b21 a\  (r\_, o[y ‘
4997\ 2 zlog |~ == + > i\ -cosnG} (11

C4=3/4, Cg=1/3, C12=1/7

Making a use of this as a soultion leads to the fact that lines for M = 0 provide a kind of
square shape with round corners. Photo 6 shows the contour lines of a similar square
drop panel given by a membrane experiment. In Fig. 23 we find the theoretical and ex-
perimental solutions on the x axis close to each other. Good agreement between these solu-

S M Result of membrane experiment

- =+ —  Theoretical solution

h)! . . R .
0 [&¢ I * T t
1.0a 1.5a 2.0a 2.5a r

Fig. 23 Value of M (Square drop panel with round panel) (6 = 0°)
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tions indicates that the deflection of a membrane is well analogous to the sum of the ben-

ding moments.

3) Shearing forces and their maximums
Since differentiation of the sum of the bending moments leads to the shearing forces,

we can obtain the shearing forces for several shapes of drop panels by measuring the
slope of the membrane

1 M
T 14y

r

The shearing forces at the edge of a circular plate is used as a standard. Photos 7, 8
and 9 show the contour lines with square, hexagonal and octagonal panels. These lines
becomes circles at a distance from a panel.

Photo 7 Moire fringes of membrane experiment Photo 8 Moire fringes of membrane experiment
(Square drop panel) (Hexagonal drop panel)

Photo 9 Moire fringes of membrane experiment (Octabonal drop panel)
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Fig. 24 Shearing forces for square drop panel
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Fig. 25 Shearing forces for hexagonal drop panel
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Fig. 26 Shearing forces for octagonal drop panel (6 = 0°)
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The shearing foroes are shown in Figs. 24, 25 and 26, which are obtained from the

slope of the membrane in each corner.
In thses figues, the standard value is Qos wich is the shearing forces at the edge of a cir-
cular plate. The shearing forces are getting smaller for increasing the distance from the

edge of panel.
The shearing force for a square is 2.9 times as large as for a circular panel, while

those for a hexagonal and octagonal panels are 2.2 and 1.3 times, respectively. Square
panel shape hence produces the maximum shearing forces.

From the above discussion concerning flat slab construction, we found that obtain-
ing the shearing forces of a plate through the slope of a membrane is quite convenient and
effective, and is expected to be very useful.
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